Download citation
Download citation
link to html
The newly developed multiphase transformation-induced plasticity (TRIP) steels are of interest for industrial applications because of their excellent combination of high strength and ductility. Their performance can be successfully controlled by designing an optimum balance in the volume fractions of ferrite, bainite and retained austenite. The characteristics of the retained austenite are considered to be the main key to achieving the desired final properties. Against this background, the effects of retained austenite characteristics, such as volume fraction, carbon concentration, size and shape, on the behaviour of TRIP steels have been studied. The crystallographic orientation of the retained austenite was measured by electron backscattered diffraction (EBSD). The effect of initial cold-rolling reduction on the microtexture development of the retained austenite was studied on an aluminium-containing TRIP steel. The results show that, by increasing the cold-rolling reduction before the final austempering, the main components of the face-centred cubic phase, i.e. copper, brass and Goss, dominate the texture of the retained austenite. In contrast, the copper and Goss components of the retained austenite are absent in the texture of lightly deformed sheets. The features of the preferred orientation of the retained austenite are discussed and explained in terms of the annealing texture of the recrystallized ferrite and bainite.

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds